Survey of Blockchain in Video Streaming

Group 12

William Anwara, Ziming Fang, Jacob Summers

Video Streaming Background

Current Infrastructure

Research Problem

- Unhealthy stakeholder competition
- Systems require higher bandwidth and storage

Motivation

- Increasing use of vertically integrated services
- Increasing streaming costs

Annual Streaming Price

\$108

\$72

\$120

\$132

\$84

\$50,420

Desirable Properties

- Healthy network of providers
- Reduced delivery costs

What is Hybrid VoD Architecture

A typical hybrid VoD architecture consists of a set of **origin servers** owned by the streaming platform as well as a set of **edge devices** consisting of users and cache nodes.

User clients stream from origin servers via client-server mode whereas they stream from neighboring cache nodes in a peer-to-peer fashion.

Research Goal

The goal of this paper

to develop a **robust incentivization mechanism**on top of CalVoD

- 1) Ensure an <u>accurate</u> viewcount for each VoD
- 2) A <u>modular</u> design which can be easily integrated into existing hybrid VoD systems

Fig. 3: System Architecture Diagram

```
contract ContentSmartContract
 string public title;
 address payable[] public artists;
 uint256[] public artists_percentages; // NOTE:
     the index has to match those in the artists
     field
 address payable public origin_server;
 uint256 public content price; // NOTE: this is
     in Wei, not ether, since msg.value in
     PavForStream is in Weis.
 uint256 public views;
 constructor(string memory Title, address payable
     [] memory Artists, uint256[] memory
     Artists percentages, uint256 Content price)
     public {
     title = Title;
     artists = Artists;
     artists_percentages = Artists_percentages;
     content_price = Content_price;
     origin_server = payable (msg.sender);
     views = 0;
 function PayForStream() public payable
     require (msg.value >= content_price);
     uint256 moneyToReturn = msg.value
         content_price;
     payable (msg.sender) .transfer (moneyToReturn);
     uint256 total = 0:
     for (uint256 i = 0; i < artists.length; i++)</pre>
         uint256 current_payable = (content_price
              * artists_percentages[i]) / 100;
         total += current_payable;
         artists[i].transfer(current_payable);
     origin_server.transfer(content_price - total
         );
     views += 1;
```

Listing 1: Proof-of-Stream Smart Contract Code

Proposed Scheme: Proof-Of-Stream

1. Content On-boarding

the process of getting a content ready for the Proof-of-Stream layer, rather than the process of ingesting a content from an external source into CalVoD's internal storage layer (i.e. not referring to the encoding, transcoding, decoding and storage pipeline).

Proposed Scheme: Proof-Of-Stream

- 2. Content Stream Request and Payment Splitting
- 3. Content Streaming and Cache Acknowledgements
- 4. Cache Payments

Evaluation

Threat Evaluation

1) Collusion-based Attacks

Such attacks typically involve a colluding party of origin servers, cache nodes and users against the content creators

2) View Inflation Attack

The VoD platform is also incentivized to increase profit margins by overcharging advertisers.

Evaluation

Integration Costs

Blockchain Modules within

- Origin Servers
 - New content smart contracts
- User ClientsUser payments
- Partner Clients
 Royalty-payouts for partners

Fig. 3: System Architecture Diagram

Evaluation

APPENDIX G. FEE SCHEDULE

The fee schedule G is a tuple of 31 scalar values corresponding to the relative costs, in gas, of a number of abstract

Name	Value	Description*				
G_{zero}	0	Nothing paid for operations of the set W_{zero} .				
G_{base}	2	Amount of gas to pay for operations of the set W_{base} .				
$G_{verylow}$	3	Amount of gas to pay for operations of the set $W_{verylow}$.				
G_{low}	5	Amount of gas to pay for operations of the set W_{low} .				
G_{mid}	8	Amount of gas to pay for operations of the set W_{mid} .				
G_{high}	10	Amount of gas to pay for operations of the set W_{high} .				
$G_{extcode}$	700	Amount of gas to pay for an EXTCODESIZE operation.				
Geztcodehash	700	Amount of gas to pay for an EXTCODEHASH operation.				
$G_{balance}$	700	Amount of gas to pay for a BALANCE operation.				
G_{sload}	800	Paid for a SLOAD operation.				
$G_{jumpdest}$	1	Paid for a JUMPDEST operation.				
Gsset	20000	Paid for an SSTORE operation when the storage value is set to non-zero from zero.				
G_{sreset}	5000	Paid for an SSTORE operation when the storage value's zeroness remains unchanged or is set to zero.				
R_{sclear}	15000	Refund given (added into refund counter) when the storage value is set to zero from non-zero.				
Rselfdestruct	24000	Refund given (added into refund counter) for self-destructing an account.				
Gselfdestruct	5000	Amount of gas to pay for a SELFDESTRUCT operation.				
G_{create}	32000	Paid for a CREATE operation.				
$G_{codedeposit}$	200	Paid per byte for a CREATE operation to succeed in placing code into state.				
G_{call}	700	Paid for a CALL operation.				
$G_{callvalue}$	9000	Paid for a non-zero value transfer as part of the CALL operation.				
$G_{call stipend}$	2300	A stipend for the called contract subtracted from $G_{callvalue}$ for a non-zero value transfer.				
$G_{newaccount}$	25000	Paid for a CALL or SELFDESTRUCT operation which creates an account.				
G_{exp}	10	Partial payment for an EXP operation.				
$G_{expbyte}$	50	Partial payment when multiplied by [log ₂₅₆ (exponent)] for the EXP operation.				
G_{memory}	3	Paid for every additional word when expanding memory.				
Gtxcreate	32000	Paid by all contract-creating transactions after the Homestead transition.				
$G_{txdatazero}$	4	Paid for every zero byte of data or code for a transaction.				
$G_{txdatanonzero}$	68	Paid for every non-zero byte of data or code for a transaction.				
$G_{transaction}$	21000	Paid for every transaction.				
G_{\log}	375	Partial payment for a LOG operation.				
$G_{logdata}$	8	Paid for each byte in a LOG operation's data.				
G_{logtopic}	375	Paid for each topic of a LOG operation.				
G_{sha3}	30	Paid for each SHA3 operation.				
$G_{sha3word}$	6	Paid for each word (rounded up) for input data to a SHA3 operation.				
G_{copy}	3	Partial payment for *COPY operations, multiplied by words copied, rounded up.				
$G_{blockhash}$	20	Payment for BLOCKHASH operation.				
$G_{quaddivisor}$	20	The quadratic coefficient of the input sizes of the exponentiation-over-modulo precompiles contract.				

Execution Costs

- Transaction cost: This is based on the overall gas cost of sending data to the blockchain, and is typically consists for the following components:
 - 1) Base cost of a transaction
 - 2) Cost of a contract deployment
 - 3) Cost of every zero byte of data or code in a transaction
 - 4) Cost of every non-zero byte of data or code in a transaction;
- Execution cost: This indicates the portion of gas that is actually spent on executing the code in a transaction by the Ethereum Virtual Machine:

Blockchain System - Content Sessions

Content Sessions System Model

Brokering, Monitoring, and Provisioning

- Content Brokering Blockchain
 - Content Brokering Contract
 - Content Licensing Contract
 - Content Delivery Contract
- Delivery Monitoring Blockchain
- Provisioning Blockchain

Network Services Chain

Research Methods

- Performance = number of transactions processed per second
- Hyperledger-Fabric and Go/Java
- Looking for time to get optimal content delivery contract

Experimental Results

Proof-of-Stream and Content Session Side by Side

	Proof-Of-Stream	Content Sessions
Architecture Type	Client-Server + Peer-to-Peer	Client-Server
Blockchain Use	User payments, view count tracking, royalty payments, cache incentivization	Content Brokering, Delivery Monitoring, Proofs, Provisioning

Conclusion

The blockchain technology has a *potential role* and *advantages* for **video streaming applications**

In the presentation, we investigated and compared $\underline{2}$ methods to implement blockchain in video streaming

There is more work to be done to bring the technology to the marketplace successfully

Contributions

Team Work:

- Meeting on demand
- Made major decisions as a group
- Distributed individual works for better efficiency

Process:

- Used Google to narrow down and choose a topic based on everyone's common interest
- Conducted extensive literature reviews to further investigate in the topic

Jacob - 1 through 6 Joanna - 7, 10 - 12 Will - 8.9

- Background (What is VOD (video on demand))
- Current infrastructure state-of-the art regular vod
 - 3.1. Limitations
- Research problem (combine paper 1 and 5)
- Motivation (combine paper 1 and 5)
- Desirable properties (what you want as the outcome, hypothetical) (combine paper 1
- 7. Hybrid (paper 5)
 - Intro to hybrid system what it means
 - system model, network model, threat model, and security model?
 - High-level idea of the research technique and methodology
 - Experimental results
- Pure (paper 1, 7)
 - Intro to pure blockchain system what it means
 - system model, network model, threat model, and security model
 - High-level idea of the research technique and methodology
- Experimental results
- Comparison
- Conclusion
- Contributions
- Reference

Title	Number	Link	Who read it?
A Model for Collaborative Blockchain-Based Video Delivery Relying on Advanced Network Services Chains		https://hal.science/hal-01610670/document	Jacob
Compress-store on blockchain: a decentralized data processing and immutable storage for multimedia streaming	2	https://link.springer.com/article/10.1007/s10586-022-0 3584-5	Jacob
A New Algorithm on Application of Blockchain Technology in Live Stream Video Transmissions and Telecommunications	3	https://www.researchgate.net/publication/337843486 A New Algorithm on Application of Blockchain Te chnology in Live Stream Video Transmissions and Telecommunications	Jacob
/ideo streaming system based on Internet of media hings and blockchain	4	https://sci-hub.se/10.1109/ISMAC.2019.8836173	Jacob
Proof-of-Stream: A Robust Incentivization Protocol for Blockchain-based Hybrid Video on Demand Systems		https://digitalassets.lib.berkeley.edu/techreports/ucb/i ncoming/EECS-2021-42.pdf	Jacob
Security and Blockchain Convergence with Internet of Multimedia Things: Current Trends, Research Challenges and Future Directions	6	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC85282 20/	Will
Blockchain for Video Streaming: Opportunities, Challenges and Open Issues	7	https://www.researchapte.net/publication/340717789 Blockchain for Video Streaming Opportunities Chal lenges and Open Issues?enrichid=rgreq-82ff59b0c4 09d971156s442f898ce15-XXX6enrichSource-Y292 XXIQYW6IQXMMOcxX24OTBUZxxMAD10Y0Mi UzNziONicyQDEZMTY4NTESNxYwMTT%3D8el=1 x 38 esc=publicationCover9ff	Will
Live video streaming service with pay-as-you-use model on Ethereum Blockchain and InterPlanetary file system	8	https://link.springer.com/article/10.1007/s11276-022-0 3009-6	Will
Push-Pull Incentive-based P2P Live Media Streaming System	9	http://www.wseas.us/e-library/transactions/communic ations/2008/30-514N.pdf	Will
A Blockchain Implementation for the Cataloguing of CCTV video Evidence	10	https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu mber=8639440	Joanna
Real-Time Index Authentication for Event-Oriented Surveillance Video Query using Blockchain	11	https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu mber=8656668	Joanna
Distributed Resource Allocation in Blockchain-Based Video Streaming Systems With Mobile Edge Computing	12	https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu mber=8574049	Joanna
Proof of Video Integrity Based on Blockchain	13	https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amu mber=8780097	Joanna
BlockSee: Blockchain for IoT Video Surveillance in Smart Cities	14	https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amu mber=8493895	Joanna

Implementation References

N. Herbaut and N. Negru, "A Model for Collaborative Blockchain-Based Video Delivery Relying on Advanced Network Services Chains," *IEEE Communications Magazine*, vol. 55, no. 9, pp. 70–76, Jun. 2021. Available: https://hal.science/hal-01610670/document

Y. Tan, S. Kadhe, and K. Ramchandran, "Proof-of-Stream: A Robust Incentivization Protocol for Blockchain-based Hybrid Video on Demand Systems," 2021. Accessed: Apr. 24, 2023. [Online]. Available:

https://digitalassets.lib.berkeley.edu/techreports/ucb/incoming/EECS-2021-42.pdf

Thanks

Credit: Template provided by Slidesgo